
Training Deep Convolutional Neural
Networks with Horovod* on Intel® High
Performance Computing Architecture

AI Products Group, Intel Corporation
Customer Solutions Technical Enabling

Introduction
This paper reviews a biomedical image segmentation project conducted in
partnership with the AI team at General Electric’s Global Research Center. We begin
by detailing the network topology (U-Net) and the Brain Tumor Segmentation
(BraTS) dataset1 used to benchmark training performance. All training is performed
on Intel Xeon® Platinum 8168 servers, and we outline both single and multi-
node implementations. Leveraging Intel’s® Math Kernel Library for Deep Neural
Networks (MKL-DNN), we demonstrate a greater than 7X speedup in time-to-
train on a single node and another 2X speedup in a multi-node environment. We
conclude with a summary of best-known-methods for optimizing Convolutional
Neural Network (CNN) topologies on Intel architecture.

Code and instructions for running this implementation of U-Net can be found at
https://github.com/NervanaSystems/topologies/tree/master/distributed_unet/
Horovod.

Data and Topology

BraTS Dataset
The BraTS dataset contains multi-contrast magnetic resonance (MR) scans from
patients undergoing treatment for gliomal brain tumors (Menze, 2015). For this
study, the 2016 collection from the BraTS dataset was divided into 31,000 2D
image slices.2 The BraTS image annotations contain four channels corresponding
to various regions of the tumorous components: edema, non-enhancing solid
core, necrotic/cystic core, and the enhancing core (Figure 1). The objective of
this study was to identify the entire tumor volume, defined as the union of all
four components (Figure 1). Each image is paired with a single ground truth mask
(Figure 2, left). Of the 31,000 grayscale images, 24,800 were randomly assigned for
training the model, while the remaining 6,200 were used for testing. As only ~30%
of pixels in the original 240 x 240 pixel images contain brain matter, the images
were cropped to 128 x 128 pixels about the center.

Authors:
Mattson Thieme (Intel), G Anthony
Reina (Intel), Jim Miller (GE), Deepthi
Karkada (Intel), Mirabela Rusu (GE),
Prashant Shah (Intel)

Table of Contents

Introduction . . 1

Data and Topology 1

	 BraTS Dataset. 1

	 Benchmarking Metric. 2

	 U-Net Architecture 3

Hardware . . 4

	 Single-Node Hardware 4

	 Multi-Node Hardware 5

	 Intel Omni-Path Architecture . . . 5

Software Tools. 5

	 TensorFlow + Horovod. 5

Optimizations. 6

	 Intel-Optimized TensorFlow 6

	 Transposed Convolution. 7

	 Data Storage. 8

	 Results . . 8

Discussion. . 9

Summary . . 10

	 Single and Multi-Node: 10

	 Multi-node only: 10

Acknowledgements 10

References. . 10

white paper

White Paper | Training Deep Convolutional Neural Networks with Horovod* on Intel® High Performance Computing Architecture

Benchmarking Metric
The standard accuracy metric on the BraTS dataset is the Dice coefficient: a similarity measure in the range [0,1] which reflects
the intersection over union (IOU) of the predicted and ground truth masks. It is defined as follows

Menze (2015) reported that the Rater-versus-Rater Dice coefficient for expert neuro-radiologists was 0.85 ± 0.08 (mean ±
std for the whole segmentation mask). Zhao reported that state-of-the-art models for this dataset have Dice coefficients
of greater than or equal to 0.85 (2018). Optimizations outlined in the following sections enabled the model to match dice
coefficients from current state-of-the-art segmentation models in both the single and multi-node cases.

Figure 1. Glioma sub-regions. The original dataset contained 4 different segmentation masks (A-D): necrosis, edema,
enhancing core, non-enhancing core. For this benchmark, the model was trained to predict the total mask (E).

Figure 2. Test set example: ground truth mask (L) and MR image with ground truth overlay (R)

where P and T are the prediction and ground truth masks, respectivelyDice coefficient 2 • |P ∩ T|=
|P| + |T|

2

White Paper | Training Deep Convolutional Neural Networks with Horovod* on Intel® High Performance Computing Architecture

U-Net Architecture
The U-Net topology used in this study is a deep CNN designed for semantic segmentation (Figure 3) based on Ronneberger’s
original design (2015). Since its introduction in 2015, U-Net has quickly become the de facto deep learning topology for
biomedical image segmentation and has been instrumental in creating prediction models across a wide gamut of imaging
modalities.

Figure 3. U-Net network diagram (Ronneberger, 2015). Numbers above each layer indicate the number of channels in that layer.
Note that the channel count in the first layer (purple ellipse) differs from the original topology by a factor of 2.

The model takes as input a single channel, 2D image and outputs an equivalently-sized, binary mask wherein each pixel is
assigned a class label. The network architecture is an encoder-decoder, with a contracting path that captures context (via max
pooling) and an expanding path which enables localization (via upsampling). Unlike the standard encoder-decoder topology,
feature maps in the expanding path are concatenated with the corresponding feature map from the contracting path.
Augmenting downstream feature maps with spatial information acquired using smaller receptive fields allows the network to
consider features at various spatial scales.

For both single and multi-node training, the Adam optimizer (learning rate 0.0005) was used to minimize the negative
log of the Dice coefficient. To increase numerical stability, a Laplace smoothing of 1 was added and the final loss function
algebraically rearranged to replace the division with a log subtraction:

loss = log(|P| + |T| + 1) - log(2 • |P ∩ T| + 1)

3

White Paper | Training Deep Convolutional Neural Networks with Horovod* on Intel® High Performance Computing Architecture

Hardware

Single-Node Hardware
Single node computation was performed on one Intel® Xeon® Scalable server using the Keras 2.2.0 API with a TensorFlow 1.8
backend. The CPU was an Intel Xeon 8168 @ 2.70GHz having 48 physical cores with hyperthreading and SpeedStep™ enabled,
and the OS was CentOS 7 (centos-release-7-3.1611.el7.centos.x86_64):

	 Architecture: x86_64

	 CPU op-mode(s): 32-bit, 64-bit

	 Byte Order: Little Endian

	 CPU(s): 96

	 On-line CPU(s) list: 0-95

	 Thread(s) per core: 2

	 Core(s) per socket: 24

	 Socket(s): 2

	 NUMA node(s): 2

	 Vendor ID: GenuineIntel

	 CPU family: 6

	 Model: 85

	 Model name: Intel(R) Xeon(R) Platinum 8168 CPU @ 2.70GHz

	 Stepping: 4

	 CPU MHz: 1691.613

	 CPU max MHz: 3700.0000

	 CPU min MHz: 1200.0000

	 BogoMIPS: 5400.00

	 Virtualization: VT-x

	 L1d cache: 32K

	 L1i cache: 32K

	 L2 cache: 1024K

	 L3 cache: 33792K

	 NUMA node0 CPU(s): 0-23,48-71

	 NUMA node1 CPU(s): 24-47,72-95

The environment settings were as follows:

TF_CPP_MIN_LOG_LEVEL 2

Hyperthreading Enabled

SpeedStep™ Enabled

KMP_BLOCKTIME 0

KMP_AFFINITY granularity=thread,compact,1,0

OMP_NUM_THREADS 48

intra_op_threads 48

inter_op_threads 2

batch size 128

Detailed explanations of these settings can be found on the Intel® website3,4.

4

White Paper | Training Deep Convolutional Neural Networks with Horovod* on Intel® High Performance Computing Architecture

Multi-Node Hardware
Multi-node training was performed on a 3-node Intel® Xeon® Scalable cluster using the Horovod distributed training
framework and the Keras 2.2.0 API with a TensorFlow 1.8 backend. Each of the machines were identical to the single-node
Intel® Xeon® Scalable detailed above, having 48 physical cores with hyperthreading and SpeedStep™ enabled. The OS was
CentOS 7 (centos-release-7-4.1708.el7.centos.x86_64) and the environment settings were as follows:

TF_CPP_MIN_LOG_LEVEL 2

KMP_BLOCKTIME 0

Hyperthreading Enabled

SpeedStep™ Enabled

KMP_AFFINITY granularity=thread,compact,1,0

OMP_NUM_THREADS 48

intra_op_threads 48

inter_op_threads 2

batch size 128 per node

Intel Omni-Path Architecture
In the multi-node implementation, workers communicated over the Intel® Omni-Path Architecture (OPA) fabric. The host
fabric adapter was an Intel® Omni-Path HFI Silicon 100 Series PCIe x16 (rev. 11). To exploit the increased bandwidth of OPA,
the IP addresses used to define the cluster were changed from the standard IPv4/6 address to the OPA specific address. This
typically involves a change in the second octet of the IP address (e.g. 11.22.33.44 to 11.100.33.44). Running opainfo tests the
OPA fabric for functionality and speed.

Software Tools

TensorFlow + Horovod
Horovod is a distributed training framework developed by Uber® for TensorFlow, Keras, and PyTorch. It uses the message
passing interface (MPI) to orchestrate single/multi-worker training in single/multi-node environments. Horovod uses an
all-reduce architecture wherein one worker passes parameter updates to a neighboring worker in a ring topology. This is
in contrast to the standard TensorFlow hierarchical architecture in which workers pass parameter updates to centralized
parameter servers. Uber® has demonstrated that Horovod scales more efficiently than the TensorFlow parameter server
architecture in distributed training scenarios (Goyal et al. 2018).

To run a Horovod process, all nodes must have the same libraries and scripts installed within the same absolute directory
paths. We installed openMPI 3.0.0, Horovod 0.13.5, TensorFlow 1.8 with Intel® MKL-DNN, and Keras 2.2.0 onto all three Intel®
Xeon® Scalable nodes.2 We then cloned our GitHub repository5 into the same absolute directory path on all three nodes. On
one of the nodes, we initiated distributed Horovod training by running the command below.

HOROVOD_FUSION_THRESHOLD=134217728 \ 	 # Buffer size for Horovod all-reduce

	 mpirun \	 # Command to run the job

	 -x HOROVOD_FUSION_THRESHOLD \	 # Use Horovod fusion buffer

	 -np <num_processes> \	 # Total number of workers

	 --hostfile <node_ips> \	 # List of IP addresses for nodes

	 --map-by socket \ 	 # Map workers by socket

	 -cpus-per-proc 24 \	 # Set to num cores per socket

	 --report-bindings \	 # Log core/node bindings for workers

	 --oversubscribe \	 # Allow more than 1 worker per core

	 bash exec_multiworker.sh <args>	 # Job to run (plus args for job)

5

https://www.open-mpi.org/

White Paper | Training Deep Convolutional Neural Networks with Horovod* on Intel® High Performance Computing Architecture

		 3. Add callbacks for variable broadcasting and gradient aggregation:

The -np flag specifies the total number of processes (workers) to initiate across all nodes. Horovod allows multiple workers
to be placed on a single node. The batch size within each process remains the defined batch size-- Horovod does not
automatically scale the batch size with the number of workers nor does it shard the dataset across the workers. The --hostfile
flag points to a text file with a single IP address per line defining the nodes in the cluster. The --map-by flag designates what
is considered a single resource - in this case, we used two-socket servers and declare each socket as a single resource. The
-cpus-per-proc flag specifies how many cores each process on each resource should be allotted. The --report-bindings flag
is optional and simply reports how the processes were bound with OpenMPI. It conveniently confirmed that the cores were
bound correctly for a given socket and node. The --oversubscribe flag allows for mapping multiple workers per resource
(if desired). HOROVOD_FUSION_THRESHOLD defines the buffer size (in bytes) for the all-reduce operations. If the all-reduce
operations exceed this threshold, then Horovod performs the all-reduce immediately rather than waiting for the end of the
epoch. This helps balance the communications versus operations speed tradeoff and is a hyperparameter that can be tuned
based on the number of workers and number of operations in the topology (although the default setting is sufficient for most
workloads). Finally, the MPI command calls the script to run within each process. In this case, a bash script was run which
activated the virtual environment, set relevant environment variables, and then initiated the main python training script.

	 Within the main python script, a few minor code changes are required to distribute a model using Horovod:

		 1. Add the following import statements and initialize Horovod:

import tensorflow as tf

import keras as K

import horovod.keras as hvd

hvd.init()

opt = K.optimizers.Adam()

optimizer = hvd.DistributedOptimizer(opt)

callbacks = [hvd.callbacks.BroadcastGlobalVariablesCallback(0),

 hvd.callbacks.MetricAverageCallback(),

 hvd.callbacks.LearningRateWarmupCallback(\

 warmup_epochs=args.num_warmups, verbose=1)]

		 2. Wrap the existing optimizer with Horovods’ Distributed Optimizer:

The BroadcastGlobalVariablesCallback is used to coordinate weight initializing across all workers at the start of training and
whenever training resumes from a checkpoint. The MetricAverageCallback averages the gradients at the end of each epoch
so that all workers begin a new epoch with the same weights (i.e. synchronous updates). The LearningRateWarmup callback is
optional. It will gradually increase the learning rate for num_warmups epochs, at which point the Adam optimizer will take over
and begin learning rate decay. Warmup can help convergence when using multiple workers because, as a natural consequence
of using multiple workers, there is a proportional decrease in the number of weight updates per epoch (Goyal et al. 2018).
Confer with the Uber Horovod website6 for more a detailed description of installation and configuration details.

Optimizations

Intel-Optimized TensorFlow
Intel optimized TensorFlow 1.8 contains Intel Math Kernel Library - Deep Neural Network (MKL-DNN) operations which are
accessible without any changes to existing TensorFlow code.1 MKL-DNN leverages the AVX-2 and AVX-512 SIMD vector
instructions when creating primitives for the convolution, pooling, normalization, and inner product operations common
to CNN topologies. Collaborating with Google®, Intel has integrated MKL-DNN into the TensorFlow main branch (beginning
with r1.5), making MKL-DNN optimizations accessible via the standard conda install command (conda install -c anaconda
tensorflow) or through building TensorFlow from source.

6

White Paper | Training Deep Convolutional Neural Networks with Horovod* on Intel® High Performance Computing Architecture

Within TensorFlow, intra_op_parallelism (intra-op) and inter_op_parallelism (inter-op) threads are critical hyperparameters
for maximizing core utilization and achieving high throughput on Intel CPUs. These can be passed to TensorFlow session
via tf.config. Intra-op threads are useful in mathematical operations which can be executed in parallel. For example, matrix
multiplication (tf.matmul) and element wise summation (tf.reduce_sum) are operations that can be broken into smaller,
parallel operations on separate CPU cores. Inter-op threads are sets of parallel operations which can run concurrently with
little interdependence. For example, long or independent graph branches, data loading operations, and metric summary
operations may benefit from increased inter-op threads. Intel recommends setting intra-op threads to the number of physical
cores on the machine, and inter-op threads to the number of disjoint branches within the computation graph (usually in the
single digits). However, both should be optimized on a case by case basis.

Transposed Convolution
The expanding path in the U-Net topology (Figure 3) can be implemented using any number of upsampling methods.
Ultimately, upsampling transforms a low resolution image into a higher resolution image. In the original topology, a nearest
neighbors algorithm (UpSample2D) was used to perform the upsampling operations. An alternative strategy, using transposed
convolution (Zeiler and Fergus, 2013; Dumoulin, 2018) in place of the nearest neighbor approach, was explored in this project.
See Figure 4 for a visual representation of both upsampling strategies.

4x4

8x8

(A) Nearest Neighbors

4x4

8x8

(B) Transposed Convolution

2x2

Figure 4: “Upsampling” with two different algorithms. (A) Nearest Neighbors Algorithm. Black areas are filled with copies of the
center pixel. This produces a “pixelated” effect. More complex algorithms (e.g. bilinear interpolation and Lanczos resampling)
use weighted combinations of the surrounding pixels to fill the black areas and provide a smoother transformation. (B)
Transposed convolution. There are multiple ways to use transposed convolution to upsample an image. A 2x2 transposed
convolutional filter with a 2x2 stride was chosen to achieve the effect of doubling the pixel dimensions. This is also referred to
as a fractionally strided convolution (cf. Dumoulin, 2018 for more details on transposed convolution). The essential difference
between transposed convolution and traditional upsampling are the convolutional kernels in the transposed convolution
operation; these kernels contain learnable parameters which allow the operation to capture non-linear mappings.

Unlike transposed convolution operations, UpSample2D operations have no learnable parameters, which may lead
one to believe that UpSample2D would run faster than transposed convolution. However, our previous work has shown
that optimized primitives in Intel’s MKL-DNN enable the transposed convolution operation to run up to 17x faster than
UpSample2D on tensors of equivalent dimension (Thieme 2018).

7

http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html
http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html

White Paper | Training Deep Convolutional Neural Networks with Horovod* on Intel® High Performance Computing Architecture

Data Storage
To avoid bottlenecks in network traffic while performing multi-node computation, copies of the entire dataset are stored
locally on all workers. A Python generator is used to feed random batches into the training framework. All training examples
are randomly shuffled after each epoch.

Results
Models trained in single and multi-node environments both achieved state of the art segmentation accuracy on the test set
(Test Dice ≥ 0.85). Figure 5 shows an example of predicted vs. ground truth masks. Good agreement is observed between
models built with the UpSampling2D vs. transposed convolution operations in the expanding path. A histogram of pairwise
differences between UpSampling2D and transposed convolution shows no statistical difference between the trained models.

-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75

1400

1200

1000

800

600

400

200

0

Dice Difference (transposed - upsampling)

Upsampling better Transposed better

N
um

be
r

of
 O

cc
ur

re
nc

es

Difference in Dice Coefficients

Figure 5. (TOP) Both nearest neighbor and transposed convolution methods can produce similar increases in image size
(“upsampling”). Predicted tumor segmentation masks from U-Net models trained with UpSample2D were compared with
transposed convolution (2x2 filter with 2x2 stride). (BOTTOM) A histogram of the pairwise difference between Dice scores
of the two models on the test dataset. A Kolmogorov-Smirnoff two sample test shows no significant difference between the
two distributions.

Prediction UpSampling

Prediction UpSampling

Prediction Transposed

Prediction Transposed

Ground Truth

Ground Truth

Image with Mask

Image with Mask

8

White Paper | Training Deep Convolutional Neural Networks with Horovod* on Intel® High Performance Computing Architecture

On average, Intel MKL-DNN optimizations reduced the training time by greater than 7X on a single node. Approximately 25%
of this gain in speed is attributable to switching from the UpSampling2D to the transposed convolution operation in the
topology. An additional 2X improvement in average time to train was gained using Horovod to distribute training across 12
workers on three Intel® Xeon® Scalable nodes (Figure 6).

25 50 75 1000

1

1

3

12

1

1

3

3

NO

YES

YES

YES

Relative training time for single and multi-node execution
(lower is better)

workers nodes MKL

Percentage of un-optimized training time

100

14

12

6

Figure 6. Average training times (as percentage of un-optimized training times) for various configurations of single and
multi-node execution to reach a test Dice of > 0.85. “Workers” indicates the total number of workers across all nodes.

Discussion
Leveraging optimizations in Intel MKL-DNN enables substantial speedups when training deep learning models on CPUs
and requires no code changes to existing train scripts. These speedups may be realized in both single- and multi-node
environments.

We stress that, due to the inherently stochastic nature of gradient descent, there is a variance in time to train to state of the art
in each configuration. Hyperparameters such as learning rate, optimizer choice, sharding, and simply the random initialization
of model weights affected convergence curves. As an example— in the worst-case scenario— if the weights in a single node trial
were randomly initialized more optimally than the weights in a multi-node trial, then the single node model will effectively be
given a head start. In short, although we report the mean time to train to state of the art, the high variance over the 10 repeated
trials means that, on any individual run, single node training may converge faster to state of the art than multi-node (Figure 6).
Nevertheless, we saw substantial increases in average training speed in distributed settings, and believe that the full potential
of distributed training may be better observed with larger datasets and more complex models than the one outlined here.

Finally, we experimented with sharding the dataset evenly across the workers. For a small number of workers (4 or less) we
found that the model converged to state of the art. However, when the number of workers was increased to 12 (3 nodes with 4
workers per node), the model required more epochs to converge to state of the art and this negated the increased throughput
gained from adding the additional workers. We hypothesize that this effect was due to the shard size becoming so small that
the shard no longer accurately reflected the statistical distribution of the larger dataset. In essence, each shard was no longer
an identical and independent distribution (IID) of the original dataset. In such a degenerate case, each worker would train on
a skewed sampling of the original dataset and report biased gradient updates during aggregation at the end of the epoch.
Consider, for example, the case where a worker trains on a shard which contained samples without a tumor present in the
image. The gradients reported by this worker may actually cause the model to diverge from the global minimum during that
epoch. Ultimately, we opted to not shard, but instead allowed each worker to train on the entire dataset. In this way, the total
time per epoch remained constant, but the convergence to state of the art improved on average with the additional workers.
Additional work will be needed to fully understand the effects of data sharding on deep learning.

9

White Paper | Training Deep Convolutional Neural Networks with Horovod* on Intel® High Performance Computing Architecture

Summary
Optimizations outlined in this paper may significantly decrease training times for single and multi-node CNN models on Intel
Architecture. Consider the following best-known-methods when running DL workloads on Intel CPUs:

Single and Multi-Node:
• �Install TensorFlow with MKL optimizations with conda install -c anaconda tensorflow. To test for the presence of MKL, run

export MKL_VERBOSE=1 which will trigger MKL to print debug statements whenever an operation is invoked.

• �We favor the Anaconda distribution of Python which includes Intel-optimized versions of TensorFlow, Python, Numpy,
Pandas, and scikit-learn.

• �Set intra-op threads to the number of physical cores available to the process, and inter-op threads to the number of disjoint
branches in the computation graph (usually in the single digits).

• �When performing upsampling in convolutional layers, use the transposed convolution instead of UpSampling2D.

Multi-node only:
• �When communicating between Intel Xeon nodes in a cluster, make use of the larger communication bandwidth available on

the Intel OPA fabric.

• �Keep copies of the entire dataset on each worker node to reduce network traffic.

• �Use a warm up strategy to compensate for the proportionally fewer weight updates when training with multiple workers.

• �Experiment with multiple workers per node to find optimal distributed execution settings for your topology and hardware.

• �Sharding may not help as the number of workers increases because each worker may not be working with a statistically-
representative subset of the data.

Acknowledgements
The authors would like to thank the GE Global Research AI team for their invaluable assistance over the course of the project.

References
• �Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby JS, Freymann JB, Farahani K, Davatzikos C. “Advancing The Cancer

Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features”, Nature Scientific Data,
4:170117 (2017) DOI: 10.1038/sdata.2017.117

• �Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby J, Freymann J, Farahani K, Davatzikos C. “Segmentation Labels
and Radiomic Features for the Pre-operative Scans of the TCGA-GBM collection”, The Cancer Imaging Archive, 2017. DOI:
10.7937/K9/TCIA.2017.KLXWJJ1Q

• �Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby J, Freymann J, Farahani K, Davatzikos C. “Segmentation Labels and
Radiomic Features for the Pre-operative Scans of the TCGA-LGG collection”, The Cancer Imaging Archive, 2017. DOI: 10.7937/
K9/TCIA.2017.GJQ7R0EF

• �Chen J., Monga R., Bengio S. and R. Jozefowicz. “Revisiting Distributed Synchronous SGD.” ICLR 2016. https://openreview.
net/pdf?id=D1VDZ5kMAu5jEJ1zfEWL

• �Drozdzal M., Chartrand G., Vorontsov E. et al. “Learning Normalized Inputs for Iterative Estimation in Medical Image
Segmentation.” arXiv:1702.05174v1 [cs.CV] 16 Feb 2017

• �Dumoulin V. and F. Visin. “A guide to convolution arithmetic for deep learning”. 11 Jan 2018 (https://arxiv.org/
pdf/1603.07285.pdf)

• �Goyal P, Dollar P, Girshick R, et al. Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour. arXiv:1706.02677v2 [cs.CV]
30 Apr 2018 (https://arxiv.org/pdf/1706.02677.pdf)

• �Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, et al. “The Multimodal Brain Tumor Image Segmentation Benchmark
(BRATS)”, IEEE Transactions on Medical Imaging 34(10), 1993-2024 (2015) DOI: 10.1109/TMI.2014.2377694

• �Thieme M. and G. A. Reina. Biomedical Image Segmentation with U-Net. 23 Jan 2018 (https://ai.intel.com/biomedical-image-
segmentation-u-net/)

• �Ronneberger O., Fischer P. , and T. Brox. “U-Net Convolutional Networks for Biomedical Image Segmentation.”
arXiv:1505.04597v1 [cs.CV] 18 May 2015

• �Zeiler M. and R. Fergus. Visualizing and Understanding Convolutional Networks. 28 Nov 2013.
https://arxiv.org/pdf/1311.2901v3.pdf

• �Zhao X., Wua Y., SongG., Li Z., Zhang Y., and Y. Fan. “A deep learning model integrating FCNNs and CRFs for brain tumor
segmentation.” Medical Image Analysis 43 (2018) 98–111.

10

https://ai.intel.com/biomedical-image-segmentation-u-net/
https://ai.intel.com/biomedical-image-segmentation-u-net/

White Paper | Training Deep Convolutional Neural Networks with Horovod* on Intel® High Performance Computing Architecture

	 1	More information about the Brain Tumor Segmentation (BraTS) challenge can be found at https://www.med.upenn.edu/sbia/brats2018.html
	 2	Instructions for installing Intel® Optimized TensorFlow™ can be found at: https://software.intel.com/en-us/articles/intel-optimized-tensorflow-wheel-now-available.

Many of these changes have already been included in the main TensorFlow™ branch.
	 3	For an overview of the OpenMP thread affinity interface, see: https://software.intel.com/en-us/articles/openmp-thread-affinity-control
	 4	For an overview of the Intel® MKL-DNN optimizations used in TensorFlow™ https://software.intel.com/en-us/articles/tensorflow-optimizations-on-modern-intel-architecture
	 5	Code and execution instructions for this implementation of U-Net can be found at https://github.com/NervanaSystems/topologies/tree/master/distributed_unet/Horovod.
	 6	Overview of Horovod training library can be found at: https://eng.uber.com/horovod/
		 Portions of this work were supported by NIH National Institute of Biomedical Imaging and Bioengineering Neuroimaging Analysis Center P41EB015902.
		 Notices
		 Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark* and MobileMark*, are measured

using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and
performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

		 § Configurations:
		 Single NodeTesting by Intel as of September 7, 2018:

1-node, Intel® Xeon® Platinum 8168, Total memory 768 GB, HyperThreading: Enable, SpeedStep: Enable, OS: CentOS 7, Kernel: centos-release-7-3.1611.el7.centos.x86_64
		 Multi-Node Testing by Intel as of September 7, 2018:

3-node, Intel® Xeon® Platinum 8168, Total memory 768 GB, HyperThreading: Enable, SpeedStep: Enable, Network devices: Intel® Omni-Path Host Fabric Interface (Intel® HFI) Silicon 100 Series
PCIe* x16 (rev. 11), OS: CentOS 7, Kernel: centos-release-7-3.1611.el7.centos.x86_64

		 Performance results are based on testing as of September 7, 2018 and may not reflect all publicly available security updates. See configuration disclosure for details.
No product can be absolutely secure.

		 For more information go to http://www.intel.com/performance.
		 Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system

configuration. Check with your system manufacturer or retailer or learn more at intel.com.
		 No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.
		 Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any

warranty arising from course of performance, course of dealing, or usage in trade.
		 This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel representative to

obtain the latest forecast, schedule, specifications and roadmaps.
		 The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized errata are available on request.
		 Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting www.intel.com/design/literature.htm.
		 This sample source code is released under the Intel Sample Source Code License Agreement.
		 Intel, the Intel logo, Intel SpeedStep, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.
		 *Other names and brands may be claimed as the property of others.
		 © 2018 Intel Corporation Printed in USA 1018/EOH/MESH/PDF  Please Recycle 338371-001US

	Introduction
	Data and Topology
	BraTS Dataset
	Benchmarking Metric
	U-Net Architecture

	Hardware
	Single-Node Hardware
	Multi-Node Hardware
	Intel Omni-Path Architecture

	Software Tools
	TensorFlow + Horovod

	Optimizations
	Intel-Optimized TensorFlow
	Transposed Convolution
	Data Storage
	Results

	Discussion
	Summary
	Single and Multi-Node:
	Multi-node only:

	Acknowledgements
	References

