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Abstract

Fermilab’s Main Injector enclosure houses two acceler-
ators: the Main Injector (MI) and the Recycler (RR). In
periods of joint operation, when both machines contain high
intensity beam, radiative beam losses from MI and RR over-
lap on the enclosure’s beam loss monitoring (BLM) system,
making it difficult to attribute those losses to a single ma-
chine. Incorrect diagnoses result in unnecessary downtime
that incurs both financial and experimental cost. In this work,
we introduce a novel neural approach for automatically dis-
entangling each machine’s contributions to those measured
losses. Using a continuous adaptation of the popular UNet
architecture in conjunction with a novel data augmentation
scheme, our model accurately infers the machine of origin
on a per-BLM basis in periods of joint and independent op-
eration. Crucially, by extracting beam loss information at
varying receptive fields, the method is capable of learning
both local and global machine signatures and producing high
quality inferences using only raw BLM loss measurements.

READS OVERVIEW

The Real-time Edge Al for Distributed Systems (READS)
project is a collaboration between the Fermilab Accelerator
Division and Northwestern University. The project has two
main goals: 1) to create a Machine Learning (ML) system
for real-time beam loss de-blending in the Main Injector
(MI) accelerator enclosure [2], and 2) to create a separate
ML system for slow spill regulation in the Delivery Ring
[3] used in the Mu2e experiment [4, 5]. In this paper, we
extend our previous work [6] and introduce a novel approach
to beam loss de-blending inspired by semantic segmentation
models originally developed for biomedical imaging [7].

Beam Loss De-blending

The MI and RR accelerators share a tunnel and one
beam loss monitoring (BLM) system. When originally con-
structed, the 8 GeV permanent magnet Recycler was used
as an anti-proton storage ring for the Tevatron collider [8].
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As the the 8 GeV anti-proton losses from RR were relatively
insignificant compared with the 120 GeV proton losses from
MLI, there was little need to monitor ionization beam losses
from RR. However, when the Tevatron was decommissioned,
RR was re-purposed as a proton stacker for MI 120 GeV
NuMI beam operation [9] as well as for 8 GeV Muon g-2 ex-
periment beam delivery [10]. As a consequence, normal op-
eration of the accelerator complex sees high intensity beams
in both Main Injector and RR simultaneously, and beam
losses from both machines are now a significant concern.
However, while the origin of radiative losses measured on
any of the 259 operational BLMs can be difficult to attribute
to a single machine, experts can often attribute losses to ei-
ther MI or RR based on timing, machine state, and physical
location within the ring.

Using streamed, distributed BLM readings and real-time
ML inference hardware, this project aims to replicate and
then improve upon the machine expert’s ability to de-blend,
or disentangle, each machines’ contribution to the measured
losses.

PRELIMINARIES

BLM:s are spaced (approximately) evenly within the tun-
nel and report the incident flux in mR/s. Because this flux
is generated when beam is lost from the accelerators, i.e.
when beam scrapes the edges of the beampipe and generates
a spray of particles that then exit the accelerator, we often
refer to it as ‘loss’. When we discuss the ‘BLLM loss profile’
we are referring to the pattern of flux measurements over the
BLMs at a given time. This is not to be confused with ‘loss’
in machine learning, which refers to the penalty incurred for
prediction errors. In this paper, when we refer to ‘loss’ or
‘BLM loss’, it is these flux measurements that we refer to.

TRAINING ON BLM LOSS PROFILES

Following recent progress in Pirate Card development
[11], which now allows for the collection of high frequency
(333 Hz) data in real-time directly from the BLMs, we have
constructed a training dataset using actual accelerator oper-
ations data.

A single training example is composed of a single BLM
loss profile, also called a ‘tick’, collected at some time i,
and is represented as a 1D vector x; € R in which each
of the 259 element represents the flux over each of the 259
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Figure 1: Accuracy is high in the primary region of interest, between 10 and 2500 mR/s. Counts reflects the number of
observations with loss in that range. Note that noise in the accuracy is driven by the declining counts with a given loss value.

BLMs at time i. To date, we have collected and processed
data from 12M such ticks at 33 Hz, 9M of which are used
for training, 1M for validation and 2M for testing.

We take a supervised learning approach to attributing
BLM losses to one machine or another so, in order to gener-
ate a training signal, we also need targets for each example.
Targets for a given tick are defined by the operational states
of MI and RR at that time. Specifically, whether or not each
accelerator is carrying beam. For a given tick x; € R>° we
construct a target vector y; € [0, 112K where the number
of classes k = 2 and the value of the label reflects whether
MI or RR are carrying beam.

When neither machine is in operation, values measured
on the BLMs could not have originated in either machine
and must be background noise. Labels y; ; for each BLM;
in this setting would be assigned values [0.,0.] as the prob-
abilities that the loss originated in either machine are zero.
It is important to include these during training to ensure
the model is able to distinguish the signatures of each ma-
chine from background noise. Next, settings in which only
a single machine is in operation at once, referred to here as
‘single operation’, the losses measured on all BLMs could
only have originated in that machine. In this case, depending
on whether MI or RR are the single machine in operation,
the labels for each BLM; at that tick will be either [1.,0.]
or [0., 1.], for MI or RR, respectively.

In the next setting, when both machines are in operation
simultaneously, referred to here as ‘joint operation’, we do
not have a clean way to attribute the losses to one machine or
the other. Indeed, this is the difficulty motivating the project.
Data collected during periods of joint operation are handled
in one of two ways: 1) We hold these data out during training
and use them only for testing, relying on expert machine
operators to assess the quality of the predictions. This is what
we will discuss in our Results section. 2) We can construct
synthesized data which approximate, to the best of our ability,
the relative percentages of the loss originating in MI or RR.
In the second case, synthetic data and labels can be created
by summing loss profiles from periods of single-operation
of each machine (controlled for machine states) and, for each
label, normalizing the target probabilities for MI and RR to
sum to 1. As training has not been completed on synthetic

data, we confine our discussion to results obtained using
method 1).

SEMANTIC REGRESSION

Here, we motivate the architectural choices made in de-
signing our model as well as detail how our semantic regres-
sion model differs from the popular UNet [7] architecture
for semantic segmentation.

Most generally, for each input example x;, we are looking
for an estimator f(-) parameterized by learnable parame-
ters # mapping 1D BLM loss profiles onto predicted class
probabilities for each BLM:

R259 ]259><k

Jo :xi € (1)
where, for each index j corresponding to BLM; at tick
i, 9i.; € [0, 1] reflects the probability that the loss mea-
sured on BLM; at tick i originated in either of the k = 2
machines (MI or RR). This task is similar to one known as se-
mantic segmentation. The object of semantic segmentation
- considered primarily in computer vision applications [12] -
is to classify each pixel in the input into one of k categories.
For example, in biomedical imaging, we may want to know
whether some pixel contains normal or abnormal tissue or,
in autonomous driving settings, we can imagine the utility
of knowing whether some pixel represents road or sidewalk.
The UNet architecture has seen wide-ranging success in
such settings. At a high level, it is composed of cascaded
convolution operations between two distinct halves. In the
first half, known as the contracting path, we apply repeated
convolution operations, each time increasing the channel di-
mension while the original spatial dimensions are downsam-
pled via pooling. In the second half, known as the expanding
path, we invert the operations of the first, de-convolving at
each layer and decreasing the channel dimension, until we
arrive at an output with the same spatial dimension as the
original input image but with k channels corresponding to
k classes. To better incorporate information from varying
receptive fields and avoid information loss, feature maps are
passed layer-wise from the contracting path to their analog
in the expanding path. Finally, softmax is applied over the
channel dimension of the final layer and class labels are
obtained.
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MDATs led

o
o
=
o
=)

—— RR Beam
—— Ml Beam
—=- Loss Sum

IS
S

Protons (E12)
N
S

o

~N
o
)
|
|
|
w
w
N
ation

BLM Index
=
o
S
i

o
[
o
o

RR Labels

BLM Index
»
P
o
Loc:

RR Inference

410 g

BLM Index

23135
o

100

MI Labels

E 641
x 200 | L5326
Q =
E L 410 2
= 100 4 Z
@ F2313

0 100

Ml Inference

BLM Index

z 641
- c
200 4 5328
S
| F410 §
100 s
F23135
3]

0 T r T T - - - - - 100

0 4 8 12 16 20 24 28 32 36 40 44 48
33 Hz Ticks

Figure 2: Inferences made on BLM losses during a period
of joint operation. A: Beam intensities (R/s) in RR and
MI over 48 ticks. B: BLM loss profiles - darker = more
loss. C and E: Labels for RR and MI, where gray indicates
that the machine of origin is unknown. D and F: UNet
model inferences for RR and MI, respectively. Intensity
corresponds to the inferred probability that the losses on a
particular BLM at a particular loss originated in RR or MI.

While similar to the original UNet, our model differs in
two important ways: 1) our input x; € R?? is 1D, so we
replace 2D convolutions with 1D convolutions, and 2) we are
not trying to predict a single class per BLM, but probabilities
for each class, each of which may scale independently be-
tween 0 and 1, so we replace UNet’s final softmax layer with
a sigmoid. Losses are calculated using the MSE between
predictions and labels: £ = MSE(Y;, y;).

RESULTS

Figure 1 details prediction accuracy per-label in periods of
single operation (MI or RR or neither, i.e. labels [1., 0.], [O.,
1.] or [0., 0.]) vs. BLM loss value. We report accuracy here
as it is a more interpretable quantity than MSE, using a 20%
threshold for the accuracy calculation, i.e. if a prediction is
further or closer that 0.2 away from the label, we consider
the inference incorrect or correct, respectively. This figure
shows that our model is able to learn robust representations

of each machine’s unique signature using only BLM loss
profiles. It also shows that prediction performance is highest
on BLM loss values of interest, namely those above the
background noise (10 mR/s) and below the existing abort
threshold (2500 mR/s). While accuracy appears to fall above
1800 mR/s, this is primarily due to a paucity of data in this
range, of which the counts in log-scale are visible on the
right axis.

Inference on Losses of Unknown Origin

Of central interest in Figure 2 are panels D and F, which
contain inferences made during periods of joint operation.
Panel A shows the circulating beam intensity in each ma-
chine as a function of time (ticks), B shows the BLM loss
profiles collected for each tick (these are the inputs x; € R>°
that our model ingests), and C/D displays the labels, where
the gray indicates regions in which we cannot assign a unique
label. These inferences agree well with known behavior in
MI and RR, and we call the readers attention to two features
of these inferences that demonstrate the model’s ability to
generalize beyond the labeled training data.

First, in panel D, the heavy band of RR inferences starting
around BLM index 200 are in agreement with known be-
haviors in RR. The two RR bumps between ticks 24 and 42
are in the beam to Muon campus, and reflect a process that
involves coalescing 53 MHz RF bunched beams into larger
2.5 MHz RF bunches. During this process, some beam is
lost, and ultimately the beam is extracted around BLM index
190. Since some portion of the beam is not captured during
the coalescing process, this beam continues around in the
machine until the end of cycle where it is finally lost at the
RR collimators and abort line around BLM index 210. This
region after BLM index 200 is where we would expect large
RR contributions to the loss, and the model agrees across
both RR bumps.

Second, in panel F, ticks 32 and 38 happen to lie in the
few milliseconds between events where there is no beam in
RR. Our model’s high confidence that the losses in these
ticks originated in Ml is likely due to the line interpolation
and lower frequency data rate. Our labeling system cannot
label this type of event correctly every time on 33 Hz data,
however, it is likely there are samples where it is labeled cor-
rectly because the sample happened to occur at an opportune
time in which losses and beam events overlapped. What we
can gather from F is that our model was able to learn these
profiles and correctly impute that, given the loss profiles at
ticks 32 and 38, the loss likely originated in MI.

Future Work

Towards the goal of real-time inference, this model is
being adapted for implementation on FPGA. We are also
exploring additional methods for improving the generaliza-
tion and accuracy of the model in periods of joint operation,
including the generation of representative synthetic data, the
incorporation of temporal information, and further statistical
analysis of synergistic effects observed during periods of
joint operation.
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