
120

6 | Graph Generation via Adaptation

In drug discovery, lead optimization is the process of making slight changes to the structure

of a candidate molecule (the lead compound) in order to improve its properties*. How-

ever, as a compound’s structure is what determines its function, every structural change

affects every property. A structural change that improves one property may harm another,

and it isn’t clear a priori which changes will produce the desired result. At present, this

problem is approached with a combination of chemical intuition, expert knowledge, and a

suite of virtual screening tools operating on cheminformatics libraries that can swap func-

tional groups, atoms or bonds where physically plausible, exploring nearby compounds in

chemical space. However, even with differentiable (neural) property predictors, because

the enumeration procedure is not differentiable, optimizing for multiple properties in this

model requires a guess-and-check approach. In this work, we take the first step to mak-

ing this task end-to-end differentiable, transforming molecular property predictors into

molecular manipulators. Specifically, we focus on a constrained variant of bioisosteric

replacement, where we simply swap atom types within a given, fixed molecular structure.

By absorbing the vectorized atomic features of a given input compound into a property

*I would like to thank Kevin Cusack for the productive, early discussions at AbbVie’s MedChem Summit
that set this project in motion.



121

predictor, we can optimize for them directly and locate new compounds with better prop-

erties and the same structure. Challenges remain, but we demonstrate that the method is

capable of differentiably optimizing compounds towards multiple desired properties while

preserving the original structure, a first in the bioisosteric transformation literature.

6.1. Methodology

Our goal is simple: to optimize a given lead compound towards multiple endpoints

(properties) without changing its structure. Given this strong structural constraint, the

task amounts to finding the optimal atomic distribution within that structure. We solve

this problem using a novel methodology that allows us to transform existing molecular

property predictors into graph generators without the need for retraining of any kind.

This is a simple method for building a generative model from a predictive one.

6.2. Differentiable Property Predictors

These days, the best molecular property predictors are end-to-end differentiable. Our

approach allows us to leverage them to intelligently navigate chemical space using the

best guides available.

For maximum generality, we assume we already have a pre-trained molecular property

predictor f✓, parameterized by parameters ✓, that maps molecular graphs onto a set of

k properties†. Ordinarily, f✓ is a graph neural network, but it doesn’t necessarily need

to be. The only requirement on f✓ is that it be end-to-end differentiable and perform

graph-level prediction, i.e., it maps entire graphs onto graph-level properties.

†In our experiments, this was a property predictor developed at AbbVie, but our methodology applies
equally using any open source model so long as it is end-to-end differentiable.



122

We denote the graph corresponding to a single molecule with G(V, E) : V 2 RN⇥d,

where N is the number of atoms in the molecule, d the number of features per atom, and

E the set of bonds joining adjacent atoms. The predictor f✓ takes this graph as input and

maps it onto each of k molecular properties as follows:

(6.1) f✓

�
G(V, E)

�
= y, y 2 Rk⇥1

6.3. Neural Atomic Replacement

Here, we introduce our methodology, termed Neural Atomic Replacement (NAR).

Bioisosteric Replacement is simply the task of swapping functional groups or, in our case,

atoms in a molecule, with the goal of improving some molecular properties. Our method

is the first learnable, differentiable solution to this atom-swapping problem.

To use this trained model to intelligently modify an input graph, we are going to recast

the input features G(V, E) - specifically the node features V 2 RN⇥d - as parameters of

a new, composite model containing both the trained model f✓ and the molecular graph

G(V, E). We denote our composite model, hf✓,V,E(·). The composite model h is parame-

terized by both the trained parameters ✓ and the features of an input compound V . The

output of h then becomes:

(6.2) hf✓,V,E(·) = f✓

�
G(V, E)

�
= y, y 2 Rk⇥1



123

Note that Unlike f , h does not take any input (it is implicitly encoded into the model)

but still produces a vector of predicted property values y 2 Rk⇥1.

6.3.1. Optimization

Now that we’ve built our composite model, we can use the standard machinery of back-

propagation to optimize the input graph G.

To do so, we need targets. However, these targets won’t be the standard labels pro-

vided in ŷ, but rather the desired values for each property. When designing a drug

compound, chemists often have a desired property profile in mind. In order for drugs

to be effective, they first need to be absorbed, distributed, metabolized, and excreted

(ADME) at certain rates. These ADME properties are the properties that the predictor

f✓ yields. When optimizing the input graph using the composite model, we denote the

desired values for each property with ŷopt. From here, updating the features of the input

graph becomes trivial: we perform a single forward step with h to generate predicted

values y, calculate the loss between y and the desired values ŷopt using a loss function

L(·). Then we calculate the gradients @L
@V which are used to update only the parameters

V in hf✓,V,E .

This solves the problem we’re after: it modifies the qualities of the input graph (drug

molecule) in such a way as to push the predicted property values towards each of the

desired values.

However, given the physical constraints of organic chemistry, this process alone is not

sufficient to yield a usable generative model. We must also respect the space of viable



124

atoms, i.e., which atoms are usable in an organic drug compound while maintaining the

differentiability of the model.

6.3.2. Fragmenting Atomic Space

One detail we have not mentioned yet is what each of the node features in V represents.

In the case of molecular graphs, we make use of the widely used RDKit framework to

preprocess the input molecules and generate their graphical representation. For each

atom in the molecule, nine features are generated; these features are:

(1) Atomic Number: Identifies the element of the atom.

(2) Chirality: Describes the three-dimensional arrangement of the atom, particularly

in stereochemistry.

(3) Degree: The number of explicit bonds the atom has with other atoms.

(4) Formal Charge: The electric charge of the atom.

(5) Hybridization: The type of orbital hybridization (e.g., sp, sp2, sp3).

(6) Implicit Valence: The number of implicit hydrogen atoms or other single-bonded

atoms connected to the atom.

(7) Isotope: The specific isotope of the element (if applicable).

(8) Number of Radical Electrons: Electrons that are not paired.

(9) Aromaticity: Whether the atom is part of an aromatic system.

The feature we are most concerned with is the first, atomic number. This defines the

type of atom at each position and is the only feature that we update in the optimization

process. This is a limitation and will be discussed in a later section but, as our results



125

demonstrate, even changing only this value is sufficient to generate novel compounds with

properties closer to the desired properties set forth in ŷopt.

The challenge is as follows: using the backprop machinery described above, we will

iteratively make small changes to the values in V , gradually shifting the compound in

‘atom-type space’ towards a compound with more desirable properties. For example, if

an atom starts out as a Carbon but a Nitrogen there would yield better properties, we

would gradually shift that value from 6.0 to 7.0, the atomic numbers for Carbon and

Nitrogen, respectively.

However, atoms can only have one integer atomic number or another, not something

in between. So, we need a way to bridge the gap between atom types in feature space

without quantizing and breaking the differentiability. To do so, we introduce the concept

of feature-space fragmentation.

As an additional note, only some atom types are usable in organic chemistry. From

all the possible atom types, we select only C, N, O, F, S, and Cl, or atomic numbers 6,

7, 8, 9, 16, and 17‡. To span the gulf between the first cluster of atom types 6 - 16 and

the second 16 - 17, while maintaining differentiability and allowing backpropagation to

effectively optimize this feature, we introduce the atomic-space fragmentation scheme in

Figure 6.1.

First, we don’t allow the features in V to take on values between these two blocks,

shown by the “eliminate gaps” transition in Figure 6.1. Second, we localize the possible

values around each of the allowed atom types, shown in the “localize atoms” transition.

‡This is mostly due to synthetic constraints.



126

Figure 6.1. The atomic-space fragmentation scheme visualized. At the top,
we show the entire space spanning both clusters of allowable atoms. Our
first step is to eliminate the space between the two clusters. Then, to further
improve the efficiency and performance of the generative scheme, we also
localize the allowable feature space around each atom. For example, if we
provide an allowable window of width 0.5, the first two allowable windows
would be [5.75, 6.25] and [6.75, 7.25]. This window size is a hyperparameter
and may vary based on the application.

The width of each of these windows is a hyperparameter, but we have found that a width

of 0.5 centered at each atom type yields good performance.

Now, when we are optimizing the atomic numbers in V using the method defined

above, we will only allow those features to take on values in the black regions in Figure

6.1, which brings us to our next methodological development: Feature Value Snapping.

6.3.3. Feature Value Snapping

Feature values in V are iteratively modified using the standard machinery of backpropa-

gation. If such a feature value falls into one of the disallowed regions (shown in gray in

Figure 6.1, we perform what we term Feature Value Snapping. Assume, for example, that



127

we have two windows 1) [5.75, 6.25] corresponding to Carbon, and 2) [6.75, 7.25] corre-

sponding to Nitrogen, and that a feature value in V was adjusted from 6.25 to 6.35 using

a learning rate of 0.1. Instead of keeping the value 6.35, which is not in an allowed region,

we would snap it up to the bottom of the next window by updating its value to 6.75,

placing it into the allowable window for atomic number 7. This procedure accelerates the

optimization process by allowing the model to spend less time in the spaces between atom

types, and we also find that it encourages the model to learn more optimal solutions.

6.4. Experiments and Results

In our experiments, we set out to answer the following questions:

Q1 - Can our method generate novel and valid compounds with identical structures

to the seed compound?

Q2 - If so, do those compounds have more desirable properties than their seed com-

pound? As defined by the targets we set.

Q3 - Further, can our method locate compounds that improve upon multiple compet-

ing properties simultaneously?

To find out, we’ve gathered a random sample of ⇠1,000 compounds from the Thera-

peutic Data Commons [50]. For each of these seed compounds, we generate a single new

compound using our method. This new compound has an identical structure, (possibly)

different atoms at each position, and is optimized towards one, two, three, or four ADME

properties simultaneously. We’ve chosen one assay from each of the four ADME cate-

gories - Absorption, Distribution, Metabolism, and Excretion - to make the experiments

as representative as possible.



128

Joint Targets A D M E
Caco2 VDSS Fu Mic Clearance

A +78.2% - - -
A&D +70.6% +23.6% - -
A&D&M +71.2% +20.2% +54.5% -
A&D&M&E -16.3% +57.1% +6.81% +70.1%

Table 6.1. Median improvements to each of five endpoints (graph proper-
ties) our method was able to achieve for property A by itself, A and B,
A and B and C, etc. A value of +10% means that the predicted prop-
erty value of the generated compound was 10% closer to the desired value
than the predicted property value of the seed compound. Higher is bet-
ter, and the uniformly positive performance shows that our method is able
to robustly generate new compounds with identical structures but better
properties than their seed compounds. Further, rows 2-4 show settings in
which we are attempting to optimize for multiple properties simultaneously.
This table shows that our method is capable of generating new compounds
that improve upon multiple competing properties at once.

Our results are shown in Table 6.1, which presents the performance of the modified

compounds when optimizing toward one, two, three, or four of the ADME endpoints.

We report the median performance to avoid results being skewed by outliers, which are

common in this space. Results are expressed in terms of improvement in the predicted

property value. For example, a value of +10% means that the predicted property value of

the generated compound was 10% closer to the desired value than the predicted property

value of the seed compound. This is what we are aiming for and what we achieve.

To answer the questions set forth above:

A1 - Yes. our method generated a novel and valid compound for each of the seed

compounds tested.



129

A2 - Yes. Predicted property values for the generated compounds uniformly improved

upon the seed compounds. The only scenario that saw performance degradation

was when optimizing for all five endpoints simultaneously, where the Absorption

metric decreased. This is due to a well-known competitive interaction between

absorption and clearance that we will discuss in Sec. 6.7.

A3 - Yes. Up to three endpoints, our method was capable of improving upon all three

simultaneously.

Table 6.1 clearly demonstrates the utility of the method, and we are proud to say that

this has been used at AbbVie in the lead optimization phase and generated a compound

sufficiently compelling as to be physically synthesized and tested. A significant milestone

for any generative method.

6.5. Methodological Details

Given a trained property predictor f✓, our method has relatively few hyperparameters.

They include:

• Learning rate: the size of the changes made to each feature value per iteration

• Number of iterations: how long we run the adaptation/optimization procedure

• Endpoints: the particular properties we’re aiming to optimize

• Feature-space fragmentation: how (and if) we decide to fragment the feature

space to improve generative efficiency

In our experiments, we choose a learning rate of 0.1. While typically too large a

learning rate to train a neural network, we’ve found that this larger rate allows the

method to explore further in feature space and find more optimal solutions.



130

We choose to optimize for 150 iterations, as this balanced performance with runtime.

We note, however, that performance increases the longer we run.

The endpoints we chose were for demonstration purposes only. Individual projects will

have their own set of properties they’re optimizing for and our method can accommodate

these without issue.

In regards to feature space fragmentation, we chose a window of 0.5 because it worked

well and was easy to implement. Smaller windows may further improve performance and

this is an important direction for future research. There is also the possibility of snapping

to the middle of the next window, as opposed to snapping simply to the next edge. We

will explore these options in future experiments.

We also note that at the end of the training, modified feature values in V are not

integers, but atom types are. As such, we round them to the nearest integer before

performing the final inference and assessing the quality of that generated compound.

6.6. Challenges

Many challenges remain, particularly as it relates to incorporating chemical rules into

the method. Due to valency constraints, not just any atom can be placed in any location

in an atom. At present, we handle this on an atom-by-atom basis, checking the valency of

the proposed atom at that position and only allowing it to be swapped into the molecule

if that constraint is satisfied. This is inefficient, and a more mature implementation would

take this into account in the generation phase.



131

Atom type is also inherently a categorical value, and our treatment as a continuous

value is only to maintain differentiability in this example. Future work could be directed

at ways of handling categorical features in a more typical manner.

There is also the challenge of computational efficiency. Similar to diffusion, we need

multiple iterations to modify the compound and converge onto a solution. This is an

unavoidable property of the method as-is but does not represent a serious detriment

because of how the method is intended to be used: to optimize select compounds one at

a time. As this is not intended to be used to generate large numbers of compounds for

screening, this limitation may be less significant than in diffusion.

Finally, as the property predictor f✓ is fixed, our method is deterministic given a

single input molecule. One way around this that we are exploring is to simply add noise

to the generation process. Adding noise on a preset schedule could help the model explore

more possibilities early on in the optimization while also allowing for the identification of

multiple modified compounds for each seed compound.

6.7. Discussion

Beyond just performant, our method is also targetable, meaning that we can trivially

target only a given subgraph or functional group by masking the gradients applied to the

input features. This is useful in the many cases where chemists know that some part of a

compound is important for their project and want to it to remain fixed. In a similar vein,

selectively fragmenting the feature space allows us to explore only particular chemical

spaces by restricting which atom types we consider. This is useful when accounting for



132

the global demands of organic chemistry or the local demands of particular retrosynthesis

capabilities.

The fourth row of Table 6.1 shows clearly the expected competition between absorption

and excretion. Generally, if a drug is absorbed more efficiently into the bloodstream, it

is available in the body for a longer duration before being excreted. Conversely, if a drug

is rapidly excreted, its absorption into the bloodstream may be reduced.

Finally, we are proud to say that, through our collaboration with AbbVie, this method

has been used in lead optimization for an active drug discovery project and generated an

optimized compound that has been physically synthesized and tested. This is a significant

achievement, inducting our method into the small cohort of machine learning approaches

that have yielded compounds worthy of synthesis.


