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Cognitive Representation
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https://arxiv.org/pdf/1909.07186.pdf

https://link.springer.com/article/10.1007/s10618-009-0132-716
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Link Prediction:

GNN as meta-architecture for imparting relational inductive biases

= Molecule XΣ

https://arxiv.org/pdf/1806.01261.pdf
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State of the art in: 

• Quantum/Computational Chemistry (chemical synthesis) 
• Citation Prediction 
• 3D vision 
• Recommender systems 
• Visual Question Answering 

2019 NeurIPS opened a new session called "Graph Representation Learning”

Graph-based methods are gaining prominence…
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https://openreview.net/group?id=ICLR.cc/2020/Conference
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Goals:  
           1) learn to infer the latent interaction graph 
           2) learn dynamics of the interacting system using 1) 
           3) complete 1) and 2) using only object trajectories as input

Model:  
           1) Encoder which predicts interactions/types given trajectories  
           2) Decoder that learns the dynamical model given the interaction  
               graph

Data:  
           1) Simulated object trajectories (masses on springs, charged particles, 
               phase coupled oscillators)
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Model:  
           1) (Encoder) Graph Convolutional Network for multi-relational link  
               prediction in multimodal networks  
           2) (Decoder) Tensor Factorization to reconstruct edges between  
               drugs

Data:  
           1) multimodal graph of protein-protein interactions, drug-protein  
               target interactions, and the polypharmacy side effects, which are  
               represented as drug-drug interactions, where each side effect is  
               an edge of a different type.  

Goal:  
           1) learn to predict polypharmacy side effects 
           2) flag and prioritize polypharmacy side effects for follow-up  
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           1) Varied - CNN + graph structured representations
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           1) curated images of entities of different sizes/types 

Goal:  
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Node Property  
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Link Property  
Prediction

Graph Property  
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Problem 1: Current GCN formulation relies on adjacency matrix
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