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2. Intuition for the kinds of problems in which GNNs will
orovide an advantage

3. Understand why structure is crucial in determining the
behavior of interacting systems

4. Understand why relational inductive biases are critical
tfor learning about interacting systems
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Brief foray into Cognitive Science...

Structure
Language (Ex. Shakespeare) Music (Ex. Beethoven)

+++ to—be—or—not—to—be—
that—is—the—question ...

Cognitive Representation

A graph G; = (V4, E1) is isomorphic to a subgraph
of a graph Gy = (15, Ey) if there exists

~J

subgraph of (3, say (), such that G; =
Y

v/
T9e

Analogy
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GNN

GNN as meta-architecture for imparting relational inductive biases

Recurrent units + MLPs + Convolutional units projected onto a

graph structure

O
Node Embedding: X -
Link Prediction: SN
Graph Embedding: e
X Mbeaaing. = > = Molecule X

Component Entities Relations Rel. inductive bias Invariance

Fully connected Units All-to-all Weak -
Convolutional Grid elements Local Locality Spatial translation
Recurrent Timesteps Sequential Sequentiality Time translation

Graph network Nodes Edges Arbitrary Node, edge permutations
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State of the art in:

® Quantum/Computational Chemistry (chemical synthesis)
® Citation Prediction

® 3D vision

® Recommender systems

® Visual Question Answering

2019 NeurlPS opened a new session called "Graph Representation Learning”

Graph-based methods are gaining prominence...

Relevance
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Relevance

deep learning
.. gan
optimization
neural network
generative models
unsupervised learning
reinforcement learnin
=g convolutional neural networ
= recurrent neural network
machine learning
E multitask learnin
© neural architecture searc
= representation learning
adversarial robustness
~ robustness
selfsupervised learning
nlp
transformer
bert
graph neural network

A keyword usage (2020 - 2019)

-1
% usage
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Message Passing

Neural Network Most fundamental kind of GNN

Graph Conv. More recent work, applying
Network principles from CNN architectures

iIn GNNs
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Node Embedding
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' Recurrent Unit

Node Embedding -> Classification
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Node Embedding

A Neural Network (MLP)

' Recurrent Unit

Graph Embedding -> Classification

-

Caffeine: 0.85
Dopamine: 0.03
Serotonin: 0.01
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Graph Graph Graph
Conv1 Conv2 Conv3
Graph
Convw. RelLU RelLU
Network

Input {X, A, D} H2 W2 H3 W3
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Implementation

Survey

Neural Relational Inference
Polypharmacy prediction

Review graph-based approaches

Popular frameworks + datasets
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NRI | Goals:

1) learn to infer the latent interaction graph

2) learn dynamics of the interacting system using 1)

3) complete 1) and 2) using only object trajectories as input

Data:
1) Simulated object trajectories (masses on springs, charged particles,
phase coupled oscillators)

Model:
1) Encoder which predicts interactions/types given trajectories
2) Decoder that learns the dynamical model given the interaction

graph
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NRI

Decoder

Tra | N | N g Slg Nna | : Table 1. Accuracy (in %) of unsupervised interaction recovery.
Model Springs Charged Kuramoto
5 objects
Corr. (path) 52.4+00  55.8400 62.8+0.0
f AX Corr. (LSTM)  52.7+00  54.2420  54.4405

NRI (sim.) 99.81+00  959.6+0s —
NRI (learned) 99.9+00 82.1+06 96.0+0.1
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Goal:
1) learn to predict polypharmacy side effects
2) tlag and prioritize polypharmacy side effects for follow-up
analysis via formal pharmacological studies.

Data:

1) multimodal graph of protein-protein interactions, drug-protein
target interactions, and the polypharmacy side effects, which are
represented as drug-drug interactions, where each side effect is
an edge of a different type.

Model:
1) (Encoder) Graph Convolutional Network for multi-relational link
prediction in multimodal networks
2) (Decoder) Tensor Factorization to reconstruct edges between
drugs



Decagon

Survey

E Polypharmacy E
Doxycycline A side effects Simvastatin

PN= P =
Ciprofloxacin r 1__& Mupirocin

A Drug O Protein H  Node feature vector
r1 Gastrointestinal bleed side effect A—Q Drug-protein interaction
> Bradycardia side effect O—O Protein-protein interaction



Decagon

Survey

E Polypharmacy E
Doxycycline A side effects Simvastatin

PN= P =
Ciprofloxacin r 1__& Mupirocin

A Drug O Protein H  Node feature vector
r1 Gastrointestinal bleed side effect A—Q Drug-protein interaction
> Bradycardia side effect O—O Protein-protein interaction



Survey

1 =0 3w +en?)

T JENY

Decagon




Decagon

h{" ) — (p(

Drug target relation

Survey

SN dwiFn® +c:;h§’“)>

T JEN

E Polypharmacy E
Doxycycline @\ side effects Simvastatin

ng 2 =i
Ciprofloxacin r—f\ Mupirocin

A Drug O Protein H Node feature vector
r1 Gastrointestinal bleed side effect A—@ Drug-protein interaction
2 Bradycardia side effect O—0O Protein-protein interaction




Survey

Encoder Decoder

Predictions

Query p(As Iy ,&)

drug pair

p(Ai r25A)

Decagon

p(As rS’A)

.. ', Polypharmacy
side effects




Decagon

Encoder

Survey

Decoder

Query
drug pair

, ... In Polypharmacy
side effects

Predictions

p(As Iy ’A)

p(As rZ’&)

p(Aa rB’A)
p(As I'4,A)




Survey

Table 2. Area under ROC curve (AUROC), area under precision-recall curve
(AUPRC), and average precision at 50 (AP@50) for polypharmacy side effect
prediction. Reported are average performance values for 964 side effect types.

Decagon

Approach AUROC AUPRC AP@50

Decagon 0.872 0.832 0.803
RESCAL tensor factorization 0.693 0.613 0.476
DEDICOM tensor factorization 0.705 0.637 0.567
DeepWalk neural embeddings 0.761 0.737 0.658
Concatenated drug features 0.793 0.764 0.712
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Goal:
1) answer questions about objects in visual scenes
Data:
1) curated images of entities of different sizes/types
Relational
Reasoning
Model:
1) Varied - CNN + graph structured representations
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What size is the cylinder
that is left of the brown
metal thing that is left
of the big sphere?

Final CNN feature maps

LSTM

Survey
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Model Overall | Count —Exist ~OWPAre  Auew - fompare
Human 86.7 96.6 86.5 95.0 96.0
Q-type baseline 34.6 50.2 51.0 36.0 51.3
LSTM 41.7 61.1 69.8 36.8 51.8
CNN+LSTM 43.7 65.2 67.1 49.3 53.0
Relational CONN-+LSTM+SA 52.2 71.1 73.5 85.3 52.3
Reasoning CNN+LSTM+SA* 64.4 82.7 77.4 82.6 75.4

CNN+LSTM+RN 90.1 97.8 93.6 97.9 97.1




Survey

Model Overall | Count —Exist ~OWPAre  Auew - fompare
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Q-type baseline 34.6 50.2 51.0 36.0 51.3
LSTM 41.7 61.1 69.8 36.8 51.8
CNN+LSTM 43.7 65.2 67.1 49.3 53.0
Relational CONN-+LSTM+SA 52.2 71.1 73.5 85.3 52.3
Reasoning CNN+LSTM+SA* 64.4 82.7 77.4 82.6 75.4

CNN+LSTM+RN 95.5 90.1 97.8 93.6 97.9 97.1
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DeepMind GraphNets
https://github.com/deepmind/graph_nets

PyTorch Geometric

@ PyTorch

https://pytorch-geometric.readthedocs.io

geometric

Implementation
mp | http://ogb.stanford.edu
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R
http://ogb.stanford.edu

Description

Node Property

ogbn-wiki

Prediction

ogbn-products

Name Description
ogbl-ddi
ogbl-biomed

Link Property
Prediction

ogbl-reviews
ogbl-citations

Description

Graph Property
ogbg-code Stra ' 1€ SNIppets Prediction

Implementation

ogbg-ppi




Challenges

Depth | Cannot currently make “deep” GNNs
Scaling | Computational concerns

Generation | Converting sensory data into structured
representations
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Problem 1: Current GCN formulation relies on adjacency matrix

N\ >

Scaling

Problem 2: Models with a single network per node

103
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Challenges
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Challenges

Problem 1: Huge amounts of sensory data, all “1-dimensional”
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- Graph Representation Learning @NeurlPS: https://grlearning.github.io/papers/
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