

GRAPH NEURAL NETWORKS

1. Know what to use to implement a Graph Neural Network

- 1. Know what to use to implement a Graph Neural Network
- 2. Intuition for the kinds of problems in which GNNs will provide an advantage

- 1. Know what to use to implement a Graph Neural Network
- 2. Intuition for the kinds of problems in which GNNs will provide an advantage
- 3. Understand why structure is crucial in determining the behavior of interacting systems

- 1. Know what to use to implement a Graph Neural Network
- 2. Intuition for the kinds of problems in which GNNs will provide an advantage
- 3. Understand why structure is crucial in determining the behavior of interacting systems
- 4. Understand why **relational inductive biases** are critical for learning about interacting systems

This talk

Motivation

Mechanisms

Survey

Motivation

Mechanisms

Survey

Challenges

Structure

GNN

Relevance

What do you mean?

What is this?

Why should I care?

Survey

Relevance

Message Passing Neural Net

 $\sim 10^{-2}$ seconds

Physical Systems

Economic Networks

https://science.sciencemag.org/content/325/5939/422

Structure	Brief foray into Cognitive Science
GNN	
Relevance	

Motivation

Mechanisms

Survey

Challenges

Brief foray into Cognitive Science...

Structure

GNN

Cognitive Representation

https://arxiv.org/pdf/1909.07186.pdf

Relevance

15

Motivation

Mechanisms

Survey

Challenges

Brief foray into Cognitive Science...

Structure

GNN

https://arxiv.org/pdf/1909.07186.pdf

https://link.springer.com/article/10.1007/s10618-009-0132-7

Analogy

•	. •	
otiv	/ati	on

	GNN as meta-architecture for imparting relational inductive biases
Structure	
GNN	
Relevance	

N //	•	•	
	otiv	atr	n

	GNN as meta-architecture for imparting relational inductive biases
Structure	Recurrent units + MLPs + Convolutional units projected onto a graph structure
GNN	
Relevance	

Survey

Survey

Survey

Survey

Survey

Survey

Motivation

Mechanisms

Survey

Challenges

https://arxiv.org/pdf/1806.01261.pdf

State of the art in:

Structure

GNN

- Quantum/Computational Chemistry (chemical synthesis)
- Citation Prediction
- 3D vision
- Recommender systems
- Visual Question Answering

Relevance

State of the art in:

Structure

- Quantum/Computational Chemistry (chemical synthesis)
- Citation Prediction
- 3D vision
- Recommender systems
- Visual Question Answering

GNN

2019 NeurIPS opened a new session called "Graph Representation Learning"

Relevance

State of the art in:

Structure

- Quantum/Computational Chemistry (chemical synthesis)
- Citation Prediction
- 3D vision
- Recommender systems
- Visual Question Answering

GNN

2019 NeurIPS opened a new session called "Graph Representation Learning"

Graph-based methods are gaining prominence...

Relevance

https://openreview.net/group?id=ICLR.cc/2020/Conference

Survey

Challenges

Message Passing Neural Network

> Graph Conv. Network

Most fundamental kind of GNN

More recent work, applying principles from CNN architectures in GNNs

Survey

Challenges

Message Passing Neural Network

Graph **C**onv. **N**etwork

Survey

Challenges

Message Passing Neural Network Graph Conv. Network

Survey

Challenges

Passing

Neural

Graph

Conv.

Survey

Challenges

Message Passing Neural Network

Graph **C**onv. **N**etwork

Survey

Challenges

Message Passing Neural Network

Survey

Challenges

Message Passing Neural Network

Survey

Challenges

Message Passing Neural Network

Survey

Challenges

Message Passing Neural Network

Survey

Challenges

Message Passing Neural Network

Survey

Challenges

Message Passing Neural Network

Survey

Challenges

Message Passing Neural Network

Survey

Challenges

Message Passing Neural Network

Survey

Challenges

Graph **C**onv. **N**etwork

Edge Classification/Clustering

Mechanisms

Survey

Challenges

Message Passing Neural Network

Survey

Challenges

Survey

Message Passing Neural Network

Survey

Mechanisms

1

2

3

0

Challenges

Message Passing Neural Network

Mechanisms

Survey

Challenges

Message Passing Neural Network

 $H^{(l+1)} = \sigma \left(\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} H^{(l)} W^{(l)} \right)$

Mechanisms

Survey

Challenges

Message Passing Neural Network

Graph Conv. Network

[1, 0, 1, 0]],

dtype=float)

 $H^{(l+1)} = \sigma \Big(\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} H^{(l)} W^{(l)} \Big)$

Mechanisms

Survey

Challenges

Message Passing Neural Network

Graph **C**onv. **N**etwork

 $H^{(l+1)} = \sigma \left(\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} H^{(l)} W^{(l)} \right)$

Features:

X = matrix([[0., 0.],
[1., -1.],
[2., -2.],
[3., -3.]])

55

Mechanisms

Survey

Challenges

Message Passing Neural Network

G C N

$$A = np.matrix([X = matrix([[0, 1, 0, 0], [1, 0, 1, 0]], [3, 0]], [3, 0]], [3, 0]], [4, 0]], [5, 0]]$$

$$A = np.matrix([X = matrix([[1, 0, 1, 0]], [3, 0]], [3, 0]], [3, 0]], [3, 0]], [3, 0]]$$

$$H^{(l+1)} = \sigma \left(\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} H^{(l)} W^{(l)} \right)$$

, 0.],

-1.],

-2.],

, -3.]])

-1.], -5.], -1.], -2.]]

raph
onv.
etwork

Mechanisms

3

Survey

Challenges

Message Passing Neural Network

https://tkipf.github.io/graph-convolutional-networks/

Mechanisms

Survey

Challenges

NRI Decagon Relational Reasoning Neural Relational Inference Polypharmacy prediction Review graph-based approaches

Popular frameworks + datasets

NRI	Goals: 1) learn to infer the latent interaction graph 2) learn dynamics of the interacting system using 1) 3) complete 1) and 2) using only object trajectories as input
Decagon	
Relational Reasoning	Data: 1) Simulated object trajectories (masses on springs, charged particles, phase coupled oscillators)
nplementation	

Im

NRI Decagon	Goals: 1) learn to infer the latent interaction graph 2) learn dynamics of the interacting system using 1) 3) complete 1) and 2) using only object trajectories as input
Relational Reasoning	Data: 1) Simulated object trajectories (masses on springs, charged particles, phase coupled oscillators)
plementation	Model: 1) Encoder which predicts interactions/types given trajectories 2) Decoder that learns the dynamical model given the interaction graph

Imp

NRI	Goal: 1) learn to predict polypharmacy side effects 2) flag and prioritize polypharmacy side effects for follow-up analysis via formal pharmacological studies.
Decagon	Data:
	 multimodal graph of protein-protein interactions, drug-protein target interactions, and the polypharmacy side effects, which are
	represented as drug-drug interactions, where each side effect is an edge of a different type.
Relational Reasoning	an eage of a anterent type.
1 •	
olementation	

Imp

NRI	Goal: 1) learn to predict polypharmacy side effects 2) flag and prioritize polypharmacy side effects for follow-up analysis via formal pharmacological studies.
Decagon	Data:
Relational Reasoning	 multimodal graph of protein-protein interactions, drug-protein target interactions, and the polypharmacy side effects, which are represented as drug-drug interactions, where each side effect is an edge of a different type.
	Model:
Implementation	 (Encoder) Graph Convolutional Network for multi-relational link prediction in multimodal networks (Decoder) Tensor Factorization to reconstruct edges between drugs

Mechanisms

Mechanisms

NRI

$$\mathbf{h}_{i}^{(k+1)} = \phi \left(\sum_{r} \sum_{j \in \mathcal{N}_{r}^{i}} c_{r}^{ij} \mathbf{W}_{r}^{(k)} \mathbf{h}_{j}^{(k)} + c_{r}^{i} \mathbf{h}_{i}^{(k)} \right)$$

Decagon

Relational Reasoning

Mechanisms

Survey

Challenges

Simvastatin

Mupirocin

目

Node feature vector

Protein-protein interaction

目

 \blacksquare

Ciprofloxacin

NRI

Decagon

Relational Reasoning

Challenges

Decoder Encoder Predictions NRI p(<u>A</u>, r₁,<u>A</u>) Query drug pair \mathbf{D}_{r_1} $\mathbf{W}_{r_1}^{(k)}$ $\mathbf{A}\mathbf{h}_c^{(k)}$ p(<u>A</u>, r₂,<u>A</u>) Gastrointestinal bleed effect \mathbf{z}_c ϕ $\underline{\mathbf{W}_{r_2}^{(k)}} \mathbf{\bigwedge} \mathbf{h}_c^{(k)}$ $\mathbf{h}_{c}^{(k+1)}$ Decagon $p(\land, r_3, \land)$ Bradycardia effect \mathbf{R} Æ $\mathbf{h}_{\mathcal{N}_{c}^{c}}^{(k)}$ Drug target relation $p(\land, r_4, \land)$ \mathbf{Z}_{S} Relational ′S \mathbf{D}_{r_n} Reasoning $r_1, r_2, r_3, ..., r_n$ Polypharmacy p(<u>A</u>, r_n,<u>A</u>) Implementation side effects

Decoder Encoder Predictions NRI **p(**▲, **r**₁, ▲) Query drug pair D $\mathbf{W}_{r_1}^{(k)}$ $\mathbf{A}\mathbf{h}_c^{(k)}$ p(<u></u>, r₂,<u></u>) Gastrointestinal bleed effect \mathbf{z}_{c} ϕ $\underline{\mathbf{W}_{r_2}^{(k)}} \mathbf{\bigwedge} \mathbf{h}_c^{(k)}$ $\mathbf{h}_{c}^{(k+1)}$ Decagon $p(\underline{\land}, \mathbf{r}_3, \underline{\land})$ Bradycardia effect \mathbf{R} $\mathbf{h}_{\mathcal{N}_{c}^{c}}^{(k)}$ Drug target relation p(<u>A</u>, r₄,<u>A</u>) \mathbf{Z}_{S} Relational **S** \mathbf{D}_r Reasoning $r_1, r_2, r_3, ..., r_n$ Polypharmacy $p(\underline{\land}, r_n, \underline{\land})$ Implementation side effects

NRI

Decagon

Relational Reasoning Table 2. Area under ROC curve (AUROC), area under precision-recall curve (AUPRC), and average precision at 50 (AP@50) for polypharmacy side effect prediction. Reported are average performance values for 964 side effect types.

Approach	AUROC	AUPRC	AP@50
Decagon	0.872	0.832	0.803
RESCAL tensor factorization	0.693	0.613	0.476
DEDICOM tensor factorization	0.705	0.637	0.567
DeepWalk neural embeddings	0.761	0.737	0.658
Concatenated drug features	0.793	0.764	0.712

Mechanisms

Survey

Challenges

84

Mechanisms

Survey

Mechanisms

Survey

Mechanisms

Survey

Mechanisms

Survey

Challenges

88

NRI

Decagon

Relational Reasoning

Model	Overall	Count	Exist	Compare Numbers	Query Attribute	Compare Attribute
Human	92.6	86.7	96.6	86.5	95.0	96.0
Q-type baseline	41.8	34.6	50.2	51.0	36.0	51.3
LSTM	46.8	41.7	61.1	69.8	36.8	51.8
CNN+LSTM	52.3	43.7	65.2	67.1	49.3	53.0
CNN+LSTM+SA	68.5	52.2	71.1	73.5	85.3	52.3
CNN+LSTM+SA*	76.6	64.4	82.7	77.4	82.6	75.4
CNN+LSTM+RN	95.5	90.1	97.8	93.6	97.9	97.1

NRI

Decagon

Relational Reasoning

Model	Overall	Count	Exist	Compare Numbers	Query Attribute	Compare Attribute
Human	92.6	86.7	96.6	86.5	95.0	96.0
Q-type baseline	41.8	34.6	50.2	51.0	36.0	51.3
LSTM	46.8	41.7	61.1	69.8	36.8	51.8
CNN+LSTM	52.3	43.7	65.2	67.1	49.3	53.0
CNN+LSTM+SA	68.5	52.2	71.1	73.5	85.3	52.3
$CNN+LSTM+SA^*$	76.6	64.4	82.7	77.4	82.6	75.4
CNN+LSTM+RN	95.5	90.1	97.8	93.6	97.9	97.1

Mechanisms

Survey

Mechanisms

Survey

Challenges

NRI

DeepMind GraphNets

PyTorch Geometric

https://pytorch-geometric.readthedocs.io

https://github.com/deepmind/graph_nets

Decagon

Relational Reasoning

Mechanisms

Survey

Challenges

NRI

DeepMind GraphNets

https://github.com/deepmind/graph_nets

Decagon

Relational Reasoning

Implementation

PyTorch Geometric

https://pytorch-geometric.readthedocs.io

Open Graph Benchmark

http://ogb.stanford.edu

Open Graph Benchmark (OGB)

95

Open Graph Benchmark

http://ogb.stanford.edu

Challenges

Open Graph Benchmark (OGB)

NRI

Decagon

Relational Reasoning

Implementation

Name	Size	Description
ogbn-proteins	100 K	Protein-protein association network linked across species
ogbn-wiki	1 M	Wikipedia hyperlinks
ogbn-products	2 M	Amazon co-purchasing network
Name	Size	Description
ogbl-ddi	15 K	Drug-drug interaction network
ogbl-biomed	100 K	Human biomedical knowledge graph
ogbl-ppa	500 K	Protein-protein association network
ogbl-reviews	10 M	Amazon user-item review dataset
ogbl-citations	200 M	Microsoft Academic Graph citation network
Name	Size	Description
ogbg-mol	500 K	Molecular property prediction datasets from MoleculeNet
ogbg-code	1 M	Abstract Syntax Trees of code snippets
ogbg-ppi	10 M	Protein-protein interaction network

Node Property Prediction

Link Property Prediction

Graph Property Prediction

Motivation	Mechanisms	Survey	Challenges

Depth	Cannot currently make "deep" GNNs
Scaling	Computational concerns
Generation	Converting sensory data into structured representations

Generation

Depth

Scaling

Problem 2: smoothing

Generation

Generation

1. Know what to use to implement a Graph Neural Network

- 1. Know what to use to implement a Graph Neural Network
- 2. Intuition for the kinds of problems in which GNNs will provide an advantage

- 1. Know what to use to implement a Graph Neural Network
- 2. Intuition for the kinds of problems in which GNNs will provide an advantage
- 3. Understand why structure is crucial in determining the behavior of interacting systems

- 1. Know what to use to implement a Graph Neural Network
- 2. Intuition for the kinds of problems in which GNNs will provide an advantage
- 3. Understand why structure is crucial in determining the behavior of interacting systems
- 4. Understand why **relational inductive biases** are critical for learning about interacting systems

Resources

- Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski, M., ... & Gulcehre, C. (2018). **Relational inductive biases, deep learning, and graph networks.** arXiv preprint arXiv: 1806.01261.

- Hamilton, W. L., Ying, R., & Leskovec, J. (2017). **Representation learning on graphs: Methods and applications.** IEEE Data Engineering Bulletin.

- Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., & Vandergheynst, P. (2017). **Geometric deep learning:** going beyond euclidean data. IEEE Signal Processing Magazine, 34(4), 18-42.

- Goyal, P., & Ferrara, E. (2018). Graph embedding techniques, applications, and performance: A survey. Knowledge-Based Systems, 151, 78-94.

- Non-comprehensive but substantial list of geometric DL papers: <u>https://github.com/thunlp/GNNPapers</u>

- Graph Representation Learning @NeurIPS: https://grlearning.github.io/papers/