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Most graphs are constructed using heuristics and, as such,  
contain noisy edges. Below, we show the performance of  
a Graph Attention Network (GAT) on a noised version of  
the Cora dataset, where we have added three random  
edges per node.  

The first cell shows the default GAT’s performance on this  
dataset. The second shows the performance of the GAT  
if we manually set the edge weights of the noisy edges to zero  
(note: this is the ideal case, the GAT does not learn this on its own).  
The third shows the performance of the GAT if we remove the noisy edges altogether. 
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Default GAT Manually zero noisy edges Manually drop noisy edges

Classification 
Accuracy

65.9% 79.0% 82.1%

Learnable Sparsification without Constraints

Results

Motivation

Our model is able to match or beat SOTA on a variety of node 
prediction tasks. Here, we review performance on both homophilic 
and heterophilic graphs, where neighborhood aggregation is 
known to be either helpful or harmful, respectively.

Node Embedding conflicts with Structure Learning

Node Embedding: Relative Edge Weighting 

• The node embedding mechanism must be able to 
account for neighborhoods of varying size. As such, 
it must normalize each neighbor with respect to all 
the others. 

Structure Learning: Absolute Edge Weighting 

• Learning discrete structures subjects the graph to 
noisy evolution, during which time we must assess 
the value of each candidate neighbor independent 
of the present network configuration.

Like the typical GAT, the input to our layer is  where  is the number of nodes 
and  is the number of features in each node. Unlike GAT, GLAM outputs a binary mask  
where  is the cardinality of the edge set. Given the input , our model yields structure learning scores 
 which represent, for each edge, the probability that we retain that edge: 

Where  is a shared linear transformation mapping node features into higher level 
representations,  is vector concatenation,  is another shared linear transformation mapping 
edge representations into structure learning scores, and  is a softmax mapping each set of structure 
learning scores  into probabilities .  

Finally, we sample a binary mask  from this distribution using the Gumbel Softmax 
Reparameterization Trick, which yields a new edge set  where .  then defines 
the computation graph for the downstream GNN representation learner. If the downstream GNN is a GAT, 
its final attention weights  would then become:
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The Graph Learning Attention Mechanism (GLAM)
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As training proceeds, the model 
unambiguously discards/retains the edges, 
with edge probabilities approaching either 
0 or 1. Note: edge sampling during 
validation/testing is deterministic.

Homophilic Heterophilic

Cora Citeseer PubMed Cornell Texas Wisconsin

GAT 82.1% 69.7% 77.3% 49.2% 45.4% 48.2%

GLAM + GAT 82.1% 70.6% 77.5% 73.0% 71.9% 81.2%

Dropped % 2.7% 7.0% 1.0% 100% 99.0% 99.0%

Our model recognizes the negative utility of 
aggregating neighborhood information and 
effectively converts itself into an MLP by 
dropping almost every edge. 

Edges in heterophilic graphs tend to join 
dissimilar nodes, degrading the performance of 
graph neural networks. This effect is so strong 
that MLPs routinely outperform GNNs on node 
prediction in heterophilic graphs.

Our model recognizes the utility in 
aggregating neighborhood information, keeps 
most of the edges and performs on-par with 
the baseline models. 

Edges in homophilic graphs tend to join 
similar nodes, allowing neighborhood 
aggregation to increase performance.  

Note: some results are still 0.5-1% below reported SOTA. Optimization is ongoing, but we have 
verified that the additional performance gain realized by GLAM is not due to it simply acting as a 
dropout regularizer.

New Idea 
Dropping noisy edges is 
better than zeroing their 
weights, and the mechanism 
for dropping those edges 
should be invariant with 
respect to the network 
structure.

Which we show here in order to demonstrate the operational change: for 
each node, the downstream GNN attends over its learned neighborhood 

 , taken from the learned edge set , and not over its given 
neighbors  in the given edge set . Here, the values  are attention 
coefficients internal to the GAT layer.
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Results 
Our model is able to 
recognize and drop edges 
that decrease performance, 
allowing the downstream 
GNN to match or exceed 
SOTA performance on 
benchmark datasets.

Challenge 
Most graphs contain noisy 
edges, and GNN’s are highly 
sensitive to network structure. 
In many cases, aggregating 
neighborhood information in a 
GNN actually harms 
prediction performance. 

Training dynamics are smooth  
and behave as expected

Distribution of  valuesη

 (%)η

After training, the model is  
confidently discarding or retaining edges

Initial random edge sampling

αij = softmaxj(eij) =
exp(eij)

∑k∈𝒩′�i
exp(eij)

η = σ(S[ELU(W ⃗hi ) ∥ ELU(W ⃗hj )]) , η ∈ ℝ|ℰ|×2

Our formulation does not rely on any exogenous 
heuristics for structure learning, such as top-k selection or 
penalties for retained edges. The only training signal is 
from the task performance.

Structure Learning without heuristics


