
IBM Research

Most graphs are constructed using heuristics and, as such,
contain noisy edges. Below, we show the performance of
a Graph Attention Network (GAT) on a noised version of
the Cora dataset, where we have added three random
edges per node.

The first cell shows the default GAT’s performance on this
dataset. The second shows the performance of the GAT
if we manually set the edge weights of the noisy edges to zero
(note: this is the ideal case, the GAT does not learn this on its own).
The third shows the performance of the GAT if we remove the noisy edges altogether.

Mattson Thieme1,2, Han Liu1 (Advisor), Yada Zhu1 (Mentor)
1 MIT-IBM Watson AI Lab, Exploratory AI Research
2 Northwestern University

Contact Information: Mattson Thieme, mattson.thieme@gmail.com, (971) 341-7808

Default GAT Manually zero noisy edges Manually drop noisy edges

Classification
Accuracy

65.9% 79.0% 82.1%

Learnable Sparsification without Constraints

Results

Motivation

Our model is able to match or beat SOTA on a variety of node
prediction tasks. Here, we review performance on both homophilic
and heterophilic graphs, where neighborhood aggregation is
known to be either helpful or harmful, respectively.

Node Embedding conflicts with Structure Learning

Node Embedding: Relative Edge Weighting

• The node embedding mechanism must be able to
account for neighborhoods of varying size. As such,
it must normalize each neighbor with respect to all
the others.

Structure Learning: Absolute Edge Weighting

• Learning discrete structures subjects the graph to
noisy evolution, during which time we must assess
the value of each candidate neighbor independent
of the present network configuration.

Like the typical GAT, the input to our layer is where is the number of nodes
and is the number of features in each node. Unlike GAT, GLAM outputs a binary mask
where is the cardinality of the edge set. Given the input , our model yields structure learning scores
 which represent, for each edge, the probability that we retain that edge:

Where is a shared linear transformation mapping node features into higher level
representations, is vector concatenation, is another shared linear transformation mapping
edge representations into structure learning scores, and is a softmax mapping each set of structure
learning scores into probabilities .

Finally, we sample a binary mask from this distribution using the Gumbel Softmax
Reparameterization Trick, which yields a new edge set where . then defines
the computation graph for the downstream GNN representation learner. If the downstream GNN is a GAT,
its final attention weights would then become:

h = { ⃗h1, ⋯, ⃗hN }, ⃗hi ∈ ℝF N
F M ∈ {0,1}|ℰ|

|ℰ | h
η

W ∈ ℝFs×F

∥ S ∈ ℝ2×Fs

σ
∈ ℝ1×2 [P(discard), P(retain)]

M ∈ {0,1}|ℰ|

M(ℰ) → ℰ′� ∈ ℰ |ℰ′�| ≤ |ℰ| ℰ′�

αij

The Graph Learning Attention Mechanism (GLAM)

Cora + Noise 00

0

As training proceeds, the model
unambiguously discards/retains the edges,
with edge probabilities approaching either
0 or 1. Note: edge sampling during
validation/testing is deterministic.

Homophilic Heterophilic

Cora Citeseer PubMed Cornell Texas Wisconsin

GAT 82.1% 69.7% 77.3% 49.2% 45.4% 48.2%

GLAM + GAT 82.1% 70.6% 77.5% 73.0% 71.9% 81.2%

Dropped % 2.7% 7.0% 1.0% 100% 99.0% 99.0%

Our model recognizes the negative utility of
aggregating neighborhood information and
effectively converts itself into an MLP by
dropping almost every edge.

Edges in heterophilic graphs tend to join
dissimilar nodes, degrading the performance of
graph neural networks. This effect is so strong
that MLPs routinely outperform GNNs on node
prediction in heterophilic graphs.

Our model recognizes the utility in
aggregating neighborhood information, keeps
most of the edges and performs on-par with
the baseline models.

Edges in homophilic graphs tend to join
similar nodes, allowing neighborhood
aggregation to increase performance.

Note: some results are still 0.5-1% below reported SOTA. Optimization is ongoing, but we have
verified that the additional performance gain realized by GLAM is not due to it simply acting as a
dropout regularizer.

New Idea
Dropping noisy edges is
better than zeroing their
weights, and the mechanism
for dropping those edges
should be invariant with
respect to the network
structure.

Which we show here in order to demonstrate the operational change: for
each node, the downstream GNN attends over its learned neighborhood

 , taken from the learned edge set , and not over its given
neighbors in the given edge set . Here, the values are attention
coefficients internal to the GAT layer.

𝒩′�i ℰ′�
𝒩i ℰ eij

Results
Our model is able to
recognize and drop edges
that decrease performance,
allowing the downstream
GNN to match or exceed
SOTA performance on
benchmark datasets.

Challenge
Most graphs contain noisy
edges, and GNN’s are highly
sensitive to network structure.
In many cases, aggregating
neighborhood information in a
GNN actually harms
prediction performance.

Training dynamics are smooth
and behave as expected

Distribution of valuesη

 (%)η

After training, the model is
confidently discarding or retaining edges

Initial random edge sampling

αij = softmaxj(eij) =
exp(eij)

∑k∈𝒩′�i
exp(eij)

η = σ(S[ELU(W ⃗hi) ∥ ELU(W ⃗hj)]) , η ∈ ℝ|ℰ|×2

Our formulation does not rely on any exogenous
heuristics for structure learning, such as top-k selection or
penalties for retained edges. The only training signal is
from the task performance.

Structure Learning without heuristics

